# Exam Lie Groups in Physics 

| Date | January 31, 2019 |
| :--- | :--- |
| Room | EA 5159.0114 |
| Time | 9:00-12:00 |
| Lecturer | D. Boer |

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the four problems are given below
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!


## Weighting

| 1 a$)$ | 9 | $2 \mathrm{a})$ | 8 | $3 \mathrm{a})$ | 9 | $4 \mathrm{a})$ | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $1 \mathrm{~b})$ | 9 | $2 \mathrm{~b})$ | 10 | $3 \mathrm{~b})$ | 9 | $4 \mathrm{~b})$ | 10 |
| $1 \mathrm{c})$ | 9 |  |  |  |  | $4 \mathrm{c})$ | 7 |

$$
\text { Result }=\frac{\sum \text { points }}{10}+1
$$

## Problem 1

Consider the group $O(3)$ of real orthogonal $3 \times 3$ matrices.
(a) Show the isomorphism $O(3) / S O(3) \cong \mathrm{Z}_{2}$.
(b) Show that the symmetric and antisymmetric tensors $x_{i} y_{j} \pm x_{j} y_{i}$ do not mix under $O(3)$ transformations.
(c) Count the dimensions of the representations of $O(3)$ under which the symmetric and antisymmetric tensors $x_{i} y_{j} \pm x_{j} y_{i}$ transform and argue whether they are irreducible or not.

Problem 2
Consider the four-dimensional representation of the generators of the Lorentz group:

$$
\left(M^{\mu \nu}\right)^{\alpha}{ }_{\beta}=i\left(g^{\mu \alpha} g_{\beta}^{\nu}-g^{\nu \alpha} g_{\beta}^{\mu}\right)
$$

(a) Write down the matrices for the following two cases: $\mu=2, \nu=0$ and $\mu=2, \nu=3$.
(b) Derive the matrix expression for $\left(\exp \left(i \chi M^{20}\right)\right)^{\alpha}{ }_{\beta}$ using $\left(M^{20}\right)^{\alpha}{ }_{\beta}$ obtained in part (a) and explain which Lorentz transformation it corresponds to.

## Problem 3

Consider the Cartan matrix $A_{i j}=\frac{2 \alpha_{i} \cdot \alpha_{j}}{\alpha_{i} \cdot \alpha_{i}}$, where the $\alpha_{i}$ denote the simple roots, for the complex rank-2 Lie algebra $\widetilde{g}_{2}$ :

$$
\boldsymbol{A}=\left(\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right)
$$

(a) Use this matrix to deduce the angle between and relative lengths of the two simple roots and draw the corresponding Dynkin diagram. Recall that in a Dynkin diagram a single/double/triple line connecting two circles denotes an angle of $120^{\circ} / 135^{\circ} / 150^{\circ}$ and an arrow points to the shorter root.
(b) Obtain the root diagram of $\widetilde{g}_{2}$ by using Weyl reflections and deduce the dimension of the Lie algebra $\widetilde{g}_{2}$.

## Problem 4

Consider the Lie algebra $s u(n)$ of the Lie group $S U(n)$ of unitary $n \times n$ matrices with determinant equal to 1 .
(a) Decompose the following direct product of irreps of the Lie algebra $s u(n)$

into a direct sum of irreps of $s u(n)$, in other words, determine its Clebsch-Gordan series.
(b) Write down the dimensions of the irreps appearing in the obtained decomposition for $s u(2)$ and $s u(3)$. Indicate the complex conjugate and inequivalent irreps whenever appropriate.
(c) Consider for $s u(2)$ the complex conjugate of the above direct product in terms of Young tableaux, decompose it into irreps and compare the answer to the one obtained in part (b). Draw a general conclusion about the (in)equivalence of the irreps of $s u(2)$ and their complex conjugates.

